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ABSTRACT
This analysis is based on the one~dimensional, inviscid, non-heat-conducting
flow equations of an ionized gas (whose electrical conductivity is in generdl a
function of pressure and temperature) flowing through a channel for the purpose
of the extraction of elecirical power. The problem is: given the inlet conditions ‘
ond o fixed channel length, what should be the distribution of channel cross-sectional
area (and hence of all other gas properties) in order to extract maximum power?
This variational problem is solved in the present paper by means of a computdtional ]
procedure based on the “method of gradients®. The method developed here /
can be applied to either a continuous-electrode generator or a segmented-electrode
generator, and with tensor conductivity, OTS PRICE
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Two series of calculations were performed, In the first series, the con-

ductivity was assumed to vary with T Guwick convergence to an optiuin
distribution was obtained with @ = 10 for dll inlet Mach numbers used except
Moz = 2. The optizaum powers extrazted were then compared for various iqlet
Mach numbers, both for constant inlet temperature and for constant inlet stagnation
temperature, In the second series, conductivity was assumed to vary with TIO/J-"S .
It was found that the power extracted kaeps increasing as exit pressure decreases
and no axiaum power exists for finite exit area, With practical limits for
exit-to-inlef area ratios.of 10 anc! 22, the optiinum extracted power was then
obtained for various inlet Mach nuabers, As exzected, the improvement over

the constant velocity distribution was great. M T el




Nom_e__nclature
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The following nomenclature is used in the pajer:

A = cross-sectional area of #AHC channel
A = cross~sectional area at inlet of MHD channel
A = cross-sectional area at exit of MHD channel
B = magnetic field strength
= - :( ':‘.

C (i )G o
Cp = specific heat of constant pressure
£,

i

G

= functions of o, x,mdyi; i=l,2,000s 0

= constant
K = gznerator load factor
L = length of AMAD channel
M = i\ach number
Wy = iuach nuaber at inlet of MiHD channel
P = gas pressure
Po = gas prossure af inlet of /HD channel
Py = gas pressure at exit of MHD channel
Cﬁo =  mognetic interoction paraaeter
R = gas constant
T = gas temperature
To = gas teiperature ot inlet of MHD channel
TI = gas temperature at exit of #HD channel
w = gas velocity
U, = gas velocity at inlet of MHT chonnel
W = gasvelocity at exit of /HD channel
X = cdistance along MiHD channel from the inlet of the channel
Y; = dependent varidbles; i =1, Z,,.,n
Yip =  valuesof y; af x= L

= criving function

assigned value of d(x) in the first of successive computations
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specific heat ratio of a perfect gas

influence functions; i =1, 2,..,n

gas density

gas conductivity

enthalpy at inlet of V.HD channel

optiaum enthalpy at exit of MHD channel

enthalpy at exit of MHD channel obtained from firsi calculation
in the iterative nrocedure

cyclatron frequency

collision time




1, INTRODUCTION

In several previous reports (I, 2), Sutton has investigated the one~dimensional
MHD flow for power generation, The five flow configurations investigated were:
constant velocify s constant area, constant temperature, constant pressure, and
constant density, Colculations in Ref, 1 showed that for a given channel length,
the constant velocity distri bution yields the largest amount of power among the
five cases investigated, Although the constant-velocity distribution is probdbly not
too far from the optimum, it is by no means clear that it is the true optimum among
the infinitely many possible distri butions. One would intuitively suspect that,
since the optimum distrfbution must be dependent on the particular function which
governs the variation of conductivity, the constant-velocity distribition which

ignores this dependency is unlikely to be the true optimum,

To seek a true optimum velocity distribution (and hence all the other
varicbles, including cross-sectional area), one might at first be tempted to use the
classical approach of calculus of variations, i.e., the Euler-Lagrange equations
with Logrange multipliers, This was indeed tried, |t tums out that in this problem,
the end points (corresponding to the properties at the two ends of the channel) are
not all fixed, Neither are the so-called ®*natural boundary conditions"
satisfied, In fact, the end~point at the upper integration limit is precisely one
of the quantities that we wish to maximize, Hence the usual variational method
fails in this problem, An attempt to transform the independent variable from distance x

to stagnation temperature Tstag simplifies the calculation greatly (due to the



simul tanczous recuction of one depaencent variahblz ond one consiraint equaiion),
but unfortunately does not seein to ramove the essential difficulty, Furthermore,
it can be shown that for a class of probleias of which the present Hroblem is o
special case, the classical Euler-Lagrange formulation always leads 7o a singuler
solution, A different approach is therefore used in this paper. This is the method
of gradients (aiso know as the method of sizapest dascent) and is to be briefly
explained in the next seciion,

Tha andlytical soriion of this paper was first issuce as a report of limited

circulation by the Space Science Ldboratory of the General Electric Company (3).

2. THE VETHCD CF GRADIENTS

The application of the inethod of gradients io a variational proolem
was apparenily first prososed by Courant in 1941 (). Recently it has been
applied by Kelly (3) and Sryson (6) and thair co-workers to the optimization of
flight trajectories in satellite and space vehicle re-eniry, The main concept can
be summarized as follows:

Consider a set of (n + 1) funcrions

gl) ng Lf.’g,) o ',LJ-.LJOL
which are all functions of the independant variadle x, between st=Jand x =L,
For convenience, we seek out one of them, o, and call it the “driving function®.
(In most robleias, onc of the functions is the dominant varidble of the problem and
therafore is the obvious choics as the driviag tunction, In other problems, how~

ever, the choice way not b2 cloar~cut; in such cases the




particular selection furns out to be unimportant.) The remaining n functions
can be considered as the "dependent variables" . They are governed
by the n known equations:

%:fé(yb 5;,""_,-%.,0(,‘)&)5 1=1,2--m
It is fo be noted that, including &, we have n + | unknown funciionsbut
only n equations. Hence one of the functions, say l(x), can be arditrarily
assignede Now we wish to aodify A(X) in order to maximize (or minimize) a
certain quantity Z which is a function of the final values 4, Y,, -+~ 4, of
the dependent varidbles Y, Y, -+, Y. .« That is, we wish fo find the porticular
A(X)  such that

P=0 (Yo, Y, * 7. Yoo)

tdtes a maxirauva {(or minimum) value, |

First of oll, wa seek the effzct of snall perturbations around an initial

solution (i.e., the zero-th orcer ax:roximaction) and write:

n
A - 83‘.‘, 83‘;_
J_:f ¢
MNext we define aset of *influence functions® Ai such thats
n
dA; 2t ., .
dx — £ 35;_)\3 @

Multiplying Eqe (1) by A4 and £q. (2) oy 55‘_ ond sumining over i, we

dbtain, noting that the resulfing two quantities with doudle summations cancel out,

d_ ¥ .5, =5 o, 2k
L 121 A1y 1% A 25

[4+)




Integrating over the distance x, from x=0 to x =L, we obtain:

[i}“gyJ JZN §ol (%) dx

=l

®

To solve for A; by Egs. (2), we must assign boundery values to A o Here we

assign these values at x = L such that:
~ {22

A= Y >u. ) @)
With this choice, the e side of Eq, (3) becomes:

[vagj] ~5<]> [iﬁ:s‘ﬁ] (5)

i=t X=0
In the problem inat we shail consider, the values of the dependent varicbles ot
x =0 are fixed and therefore the last term on the right side of the dbove equation
b

can be dropped. 5usiiiuiing into the left side of Eq. (3):

0 i=i (6)

This equation encbles us to cdlculate, for a small pertutbation SA(X) of the
driving function o[ (%) , the change §@ on the function & which we wish to optimize,
(Note that A;(x) has already been obtained from the differential cquciions (2),

«
together with the soundary conditions (4)).Now, for a given vdlue of f o ( $d )"d_x ,



it can be shown by means of Lagrange multipliers, that the largest value of &
is obtained if
*  9f;
Sd= GZ?\L';;‘(’ G = constant 7)
This represents the *s teepest descent” direction towards the minimua g,

For an 54 dlong this direction,

$$= Gj [E?\L ©)

The constant G is deterimined by the size of step, i.e., the value of S48, that
we wish to take in each cycle of calculation. For example, if we wish to take
S§# tobe -l%ofﬂ‘, we will then use:

$§P
G= 7 2 > g4>-‘-~0.0145 )

L o
i (;1%-5;;) dx

The new Jl(x) is then

(%) oy = A (Wypy + 6 Z A "’f (10)

and the calculation is repeated, It is clear that with a different oA(x) , dll the
Y, () values will be different dlso. In this way each cycle of calculation
yields a modification of ol(x) , that is the Sol(X)  which will bring § closer
to its opﬂmm volue. The cdlculation can be ferminated when

f ( Z 7‘-1 d—"v is much smdller thon its value during the

first cdwlahon.



Vie shall now qoply the ddove discussion to the /. \HE channel flow
proslem, With the usual assumptions of one=dimensional approximation, perfect
gas law, and non-viscous and non-heat-conducting fluid, (see Ref, 1), the

relevant equations are
Nomentun pu :—-_—:—E + % =~-(-K)Rocw
uwy _ 2.2
Energy PLL%,:Z(C?T+ ’5‘_")--K(}-K) B 0w
Continvity PAW = constant
Perfect Cas ‘P =p RT
In the cbove equations, T is the conductivity cnd K is the loading factor; i.e.,
the ratio of actual voltage to open-circuit voltage. The ddove equations apply
to either a continuous-alectrode genararor with WeT<<] or a segmented-clectrode

generator with arbifrary . T , where (,is the cycloiron frequency and T the

collision time. rlowever, they can also be applied to a continuous-electrodz

. . Js
generator with atbiirary W, T , if 0 is replacad by T;—-%——_E; » where (5
W,

is the conductivity with B =0,
Given the initial conditions at % = 3, we wish to minimize the findl
2
stagnarion enthalpy (C'rT.y %—)L ax=L,
Auw

Let 1= = A (%) be the driving function, The dependent

varidbles are W, 4 and T, Let

yl: u'; yz‘_" P, ‘.‘.‘33 T

G



dy:
The set of equations 2%: = f., (4,4, - - Yo, d,x)  are therefore:

d

—-L-‘-'zd (Hu)
dp

==K Bl u - % wel (1tb)
iTx' K(I-K)B R (o‘uT)__ __«4._0( f1o)

with C=0(p, T)

Before proceeding any further, it is convenient to non-dimensionalize every

quontity, For this purpose we define:

= 5= b =_T 5= L
oW PE% T=T =T
— (12)
= X —~ _ di =_ 9
=T =E T
Furthermore, we introduce the magnetic interaction parameter C‘.fomd Mach number M,
_ Bl M. = Uo
W="Tguw. ° VYR (13)

(Note that the subscript O denotes initial conditions at x =C). Having defined
these quantities in non-dimensional form, we shall in the following drop the bar on

top, with the understanding that all quontities are now non-dimensional in the

manner just defined,

The equations for the non-dimensional dependent varidbles W f3 and T are:

du

ax= (14a)



dp

Al o O-K)¥RME wa—ymE T2

dx T (14b)
d T GUT z
%3 K(i- K)(b’ 1) Qo Mo ,P (T‘ )MO wol (]k)
Let
C=(1-K)Q (13)
The dbove equations can be rewritten:
%:c( (160)

d pu
Z%““‘"Mé (Cwuds == )

(16b)

é'l =-CF-1)M; (KC -{ﬂ +uo()

(16c)

The equations for the influence functions )\-u.J lb and 9&1- ore

dAu A I
Tt= MZ'{T (et F)Ap *(b'—t)("ﬁ‘%' T )}\r} (17q)

%= {T(cu-51?+ YL T KeUT S5k )"T} (17)
dAr
dx

=R - ke £ 2D} g

The non-dimensional final enthalpy which is the quantity that we wish to minimize is:

-4
b= T+ T MU



The boundary vulues of Au, Ap, and A+

[(Ad], = 5& =(rnmMEu,
29
[A4],=35=0
3
[Ail“?§}=

are therefore:

The quantity proportional to our desired  $a(x) is:

______ Au __b’ pu
zh (-NMo @-oME 71 T

[ . / I
We now introduce for convenience two new quantities A.u_ and 1,,

toreplace Aw ond Ap:

‘ ).“ . /_
A= sy S A=

(-1 mMF

Eqs. (17) are then simplified:

d-ﬁ (dd’{»ﬁ)}k',*(’(d "'ol-)AT

Droymd (g +42) akeur Z D) 2, )

dorr

i = NM {(C.’ug}"‘ PW*)AP "'Kc

;t,,-uxrj

TN

(GT)AT}

(18a)

(18b)

(18¢)

(19)

(20)

(21q)

(21b)

(21c)

The greatest simplication is, however, in Eqs. (18) and (19). Egs. (18) become:

[AL) =uw,
[2p) =0

(22q)
(22)



(], =1 (22¢)
and Eq. (1 9) becomes:

E‘ AL a—’[—.—_(x ')MQ(A{,,J%_‘&;:,,-MT) (23)
It should be noted that in a.+irlD problem, the physical redlity calls for
positive and non-vanishing values of p, T, and w, Under these restrictions,
it may be that a stationary value of ﬂi does not exist. In other words, it is
possible that the optimua ﬂl requires zero  and T (hence infinite area) at exit,
a requirement which is hard to meet in practice, This is reflected in some of the
calculations. Thus for certain assumed forms of conductivity in relation 4o
temperature pr temperature and pressure, this method results in no ;'.iini;a»u.}'. ﬂl
despite the fact that successive computations yield progressively smaller ﬂ] .
For these instances, there is no stationary value of )’Jl with respect to the driving
function ol(x) within the restrictions of physical redlity.

It also should be noted that peculiar to the iHD problem, $ol  will be
a;F

zero whenever Z A7 becomes zero, or equivalently, the

=

right hand side of Eq, (23) vanishes. Substituting the boundary conditons given
in Eqs. (22a), (22b), and (22¢) into Eq. (23), one cbtains  ($d),_ =O©
regardless of the value of G, Since d(X) is arbitrarily assigned in the first
iteration, the value of d at x = 1 will remain this arbitrarily assigned value, It

means that this method does not alter the rate of change of velocity ot the exit

from its initially assigned value. This appears to be purely coincidentdl due to
the particular values of boundary conditions associated with this problera, However,

we shall see later that actual computations seem to indicate that this does not pose

an intrinsic dilemma to the minimization of ﬁl .

10



4o SUMMARY OF CONMPUTATICNAL PROCEDURE

— — —

The computational proczdura can now be suimmarized as follows: Given the

following quantities which are constants of the problen:

Cenerator Cocfficient K
Maognetic Parameter Céo
Inlet Aach Number i“v“.o
Ratio of Specific Heats .1

hence, C=(1 -X) <
o
and the variation of conductivity 0= g (10, T)
Step 1 Assuming a distribution for the "driving function® A(X) , we con

nuerically integrate the following set of sizultaneous differential equations:
Y g g

%2 (16q)
% ==¥MG(CUT+ P_?:OL (160)
%:41; Im2 (ke T2 J;;T +UL) (16c)

The infegration is to be perforaed from x =0 to x =1, The boundary conditions
atx=0are We=Po=To=1. \ihen the integration is completed and the findl

. - U » p— ‘-, z z'
values W, p  and T, at x = 1 are found!, wa obiain 43, =T+ 12-_"""471»‘-

Sinca this value of %] is not nacessarily e iainimum, we can proceed o the next step:

1




Step 2 Numerically integrate the following set of simultaneous differential

equations for the “influence functions" 2\, , ?\:P, andl Azt

/
%‘:(c‘o’-t EAL+ e Zh+ Ay (@le)
M’
Z’iﬁ";”‘a {(Cu TR )A,, + KC uTat,(‘;’;)?x } (21b)
A 20
A1 (i) M:{ (Cus=- )1 +keZ aT(a-r)s\T} 21¢)

This integration is to be performed "backwards® from x =1 o x = 0, starting with
the boundary conditions at x = 1:

], =u, (220)
[24],=0 (22)
(Ar)=1 (22¢)

Note that all quantities such as u ,T,and ¢ appearing in the coefficients of Eqs. (21)
are the results of Step 1.

Step 3 The desired variation $«{(%) on the driving function <l(x) is then

gg(x):G(n’-u)M ()\“-—-——-5\ ‘ulf)

SMX)=6G A (230)

where A= A()=(¥-1)M2 (A, - %_‘-"— ):‘,- u.')«r) (23b)

12




The constant G is dbtained from

¢

G= L'A; dx. |
Step 4 Repedt Step 1 to Stap o wiili tha aew a{(;x.)
Aoy = Adppq + 8 (1) (24)

2
The iteration can be ferminated when f A AX s much smaller than its value in the
4]
first calculdtion.

Se NUMBERICAL RESULTS

I. Conductivity veries with i

If conductivity is assuined to be a function of temperature only and is of the

form of the power law
T=T% (23)
then Egs. (:6a), (163), and (16¢) recucs to
dw _ (16¢%)
ax = A
42 oy curr PE4) 08
W+
%:—M-OM}'(KC&% +UA) (16¢*)
Similarily, Eqgse (210), (21b), and (21c) reduce to
y w0 b wH
BT B e O 1e)
’, ws
L=yl (BN, —-Kcu% AT) (215)



:&' =(¥-1)ME {(Cuw‘r g pud\))\ +(“9i%5£.’§, T“’,\T} (21c*)

The dbove two sets of equations are 1o be integrated numerically by the
procecure outlined dbove, together with the given boundary conditions,

The numberical integration was carriec out with an RPC 4000 electronic
digital computer. In general, the progran was written in such a way that successive
"descending® steps are progressively sadller, and arc proportional io

1
[ (l=! L 5% dx | Thisis accomplished by taking §F in the (n ¢ 1)-th

computation as

(Lol
4] .= [[(2 A2

nr]_[ 4,

The cdlculation is siopped when finally j (Z Al is, say,

m of its value in the first calculation, or when inspection shows that ﬂl

nas reached a ainimuia value.

For those sefs of parameters which do not yield a minimun jl} (see Section 4),

of\e

the value of f ( Z Az dJC in successive computations is progressively
larger, as one might expect, Cases 4 and & in Table Tare exanpless §F in these
cases is set to be constant in successive computations.

Fige 1 is a typical exanple showing the sattern of descent of Z] in

arriving at its minimum value. The exit pressure is used as the dbscissa to indicate

the manner of convergence., Cther quantities, such as teimperature, can also be used,




In conirast o Fig. !, a typical case of progressively dascending /,, but
with no aparent inini.aua ,d} is shown in Fig. 2, li is of interesi o note that when
a ainimuia }f] exisis, orogrossively ,3" moves dlong a paraboia-like path. ‘Ythen a
minimuia l] cloas not exist, ,-Zf] moves along a hyze bola-like path,

Teble I presents the results for 0= Tm, where W= 10 with the exception of
case 5 in whichw= 2, As shown in this ieble various values of the paraneters
involved are assigned. The rasults are suamarized in the last 6 coluinns in the
following order: inlat siognation enthal oy ﬂo , Optiiaura exit stagnation enthalpy
fl] , exit stagnaiion cnthaloy calculated in the first try‘j-l-‘ (in all cases excepi
case 7 the first ity is a consiant velocity disiribution, i.e, dz0), fraction of
power extracied with optimua Hath (ﬁo-;’ll) / ﬂo' fraction of power extracted in the
first ry (ﬁo-ﬁl): / ﬂo’ aiid the percentage gain of power extracted w.i)h bpfimm nath

as compared fo the first fry (51-”]) / (ﬁo-ﬁ]).

The sef o7 computations fro.a case | to 4 have idenfical entronce
concitions axce:t th: antrance Mach nuiabar. The rasults showed that jll has
a miniaum only waon :“.-\.02 =03, 1.0, and 1.5, For the case of Moz =2,J
the decraase of ;Zi in successive computations is lilc thet given in Fig. 2. The
behavior of this tyne of descent will be discussed later, Velocity variation for
optiraum 53‘ of these runs are shown in Fig, 3. The local Mach number and channel
cross-sectional area are also calculated for these optimum cases and are given in
Fig. 4 and 5, respectively. Calculations using different size of steps in the
iterations show that the final results are independent of the size of the steps taken

in each of the successive computaiions.




Case & is like that of Case 1 except the value of ¥is taken as 1,67 instead
of 1.2, This change results in a large increase of extracied power, The velocity,
locdl iviach number, and cross=sectional area for optiraua condition are shown in
Fige 66

In case 6, w=2 was used. It was found that similar to case 4, there was
a progressive dascent of 2’] , but with no mini:aun,

Case 7 was assigned an of = 1 in the first coaputation, As noted before,
the slope of U af x =1 will then dways remain unity in dll the successive computations,
Velocity, local Miach nuaber, and cross-sectional area for optizaun concitions are
shown in Figs. S farough £, respaciively. Sccause of this intrinsic property of
the first assigned value of o, the velocity variction is slightly different from that of
caso 1, whichhasan o =0, The resulting channel cross-sectional area and
the optiun ;ll for both cases, howaver, are exacily the sane with any difference
epearing only in the 4th or 5th significant figure,

Cesas U through 10 were designed fo find the most favorable entrance Jviach

aumber among all the optizaum @]s for constant siagnation enthalpy at inlet, If Czo
L]

~

- A} » N A ¥
is tden to be unity for /A “ =1, then

o ok .
Qo _ (1_0 /Mcc’%)

(e ¥ (% )

M2zt

Using

T = T;),.sfag
° H-Eé—'- M2

[~4



cea b
0.5+ 2]

we obfain

_ (I E M)
()

= gy n 4.5
K ¥=1.2,0=10, then 2 = 12X (14000

iV

This variation of G;o with Mo was adopted in cases 3, 9, 10, (.\»‘.02 =0,5, 1.5, 2,0,

respectively, ;‘v'zoz =1 is alreacly coverad in case 2,)

Velocity, Mach number, and cross-sectional area of these cases are shown
inFige 7, S, and 9 respectively. From Fige 10, it is seen that the most favordble
entrance iviach number is near unity.

Siailar calculations were pe rformed in case 11 for ¥'=1.67, Again, CEO
was chosen to be unity for M°2 =1.C. The results of case 11 are plottad in Fig. 6.

It was noted that for conductivity tdking the form of G= T, cases 4 and 6
do not have a mininua ﬁls ﬂ] in these cascs is progressively smaller in successive
computations, and py and T, progressively approach zero, This behavior

can be seen from Cgse (160") and (15¢), Pressure and temperature will

approach zero when 3—3—: and % become excessively negative throughout the

channel i Now, whan the ferias within the porenthesis in these equations assume
a negative value, then p ond T will always be positive and cannot approach
zero, When these terins assume a positive value, then i’—_g and %—Ti pecome
excessively negative if a‘ﬂoz or Y , or both take a large value, and hence

Py and 'I'l aporoaches zero at the exit, The first term inside the parcnthesis in both

equations is always positive. In the case of a nearly-constant-velocity channel,

17




say, this term is excessively large when Wis small, The dbove is a heuristic
explanation of case 4, where M becomes excessively large, and of case 6,

where wis not sufficiently large.

Ta)
1§ Conductivity varies as Tf;

When conductivity is taken as a function of both temperature and pressure,
—
and is of the form o= —

IF

Egs. (15a), (16b), and (16¢c) become:

.‘_t_'.‘..— 2 (16a%)
d T'° oA am
;’Iz“b'M:(C“‘-Fvl"'?&f‘) (165%)
iO
%I_ —(¥-)ME(Kdu .t Wl ) (16c")
Eqs. (21q), (21b), and (21c) become :
d?w =(¢ X 10,,,_ + P4 ) 9\1,+(Kc 1,3,1 e (2ia")

! urt'® ol 3 "
%’\_y TMO{(‘C2193/Z “)x? 3re = 7\1} (21b")

L= (r-im o “T.,z L) Ap+ ,,s/ } (21¢%)

18



Cases 12 1o 15 in Todle [ list the given conditions and results in the series
of computations carried out with this form of conductivity., None of this series of
computation gives a minimum . 2’1 . ﬂl in successive computations descends like
that given in Figs 2, It appears that the heuristic argument outlined before for
cases 4 and & is equdlly opplicable to explain the result, Figs 11 is a typicdl
example of the successive steps assumed by velocity, pressure, temperature, and

cross~sectional arzc in the iteration,

Since zero pressure and temperature af the exit implies’ infinite cross-sectional

areqa, one is naturally interasied only in exit pressure and temperature which give
an exit cross~sectional arca of practical vdue., For this pumpose, an interpolated

ﬂl is obtained for a fixed exit-enirance area ratio, ﬂ] thus obtained is tabul ated
A

in Table I for ~—— =10, and 20, Sicailar results for cases 4 and & are olso
given in Table I, The Slank in case 15 for ,}1 = 10 is due to the fact that the
o A

A
constant velocity ( & = 0) cdlculation alreccly yizlds an —_ﬂl- =13.,34. Indli
)

cases, the cdv aniage over constant velocity distribution is large.
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¢, EXIT STAGNATION ENTHALPY
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FIG,. 1

ITERATION PATTERN FOR A CASE WITH MINIMUM &,
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